Generalized Cesàro operators on Dirichlet-type spaces

نویسندگان

چکیده

In this note, we introduce and study a new kind of generalized Cesàro operator, $$\cal{C}_{\mu}$$ , induced by positive Borel measure μ on [0, 1) between Dirichlet-type spaces. We characterize the measures for which is bounded (compact) from one space, $$\cal{D}_{\alpha}$$ into another one, $$\cal{D}_{\beta}$$ .

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces

In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.

متن کامل

essential norm of generalized composition operators from weighted dirichlet or bloch type spaces to q_k type spaces

in this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted dirichlet spaces or bloch type spaces to $q_k$ type spaces.

متن کامل

essential norm of generalized composition operators from weighted dirichlet or bloch type spaces to q_k type spaces

in this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted dirichlet spaces or bloch type spaces to $q_k$ type spaces.

متن کامل

Superposition Operators on Dirichlet Spaces

In the context of a strongly local Dirichlet space we show that if a function mapping the real line to itself (and fixing the origin) operates by composition on the left to map the Dirichlet space into itself, then the function is necessarily locally Lipschitz continuous. If, in addition, the Dirichlet space contains unbounded elements, then the function must be globally Lipschitz continuous. T...

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Scientia

سال: 2021

ISSN: ['1572-9087', '0252-9602']

DOI: https://doi.org/10.1007/s10473-022-0111-2